Semi-coordination in Co(II) Schiff-base Single-Ion Magnets

${ }^{a}$ Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, CZ
${ }^{b}$ Magneto-Optical and THz Spectroscopy, CEITEC Brno University of Technology, Brno, CZ

Semi-coordination

- Noncovalent analog of the coordination bond introduced by Brown et al. in 1967, 'intermediate type of bonding between coordination and nonbonding, very weakly coordinated' [1]
- It usually implies the noncovalent nature of corresponding interactions with the major contribution derived from electrostatics and minor contributions from charge polarization and charge transfer [2]
- Simple initial criterion for the $\mathrm{M} \cdots \mathrm{A}$ pair: $d(\mathrm{M} \cdots \mathrm{A})<\sum R_{\mathrm{vdW}}$, but significantly longer than typical covalent bond (>> $\sum R_{\text {cov }}$)
- Criteria resulting from the topological analysis (QT-AIM):
(1) attractive non-covalent interaction (at BCP: $\nabla^{2} \rho(r)>0$ and $\boldsymbol{H}(\boldsymbol{r})>0$)
(2) Lagrangian kinetic energy $\boldsymbol{G}(\mathbf{r})$ vs. potential energy density $\boldsymbol{V}(\mathbf{r})$ at the BCPs $(3,-1)$: | $\boldsymbol{V}(\mathbf{r}) \mid / \boldsymbol{G}(\mathbf{r})<1.0$ for non-covalent interactions [3]
[1] I. V. Ananyev et al., Acta Cryst. B76, 2020, 436-449
[2] Z.M. Efimenko et al., Inorg. Chem., 2020, 59, 2316-2327.
[3] E. Espinosa et al., J. Chem. Phys. 2002, 117, 5529

Motivation: SIMs and semi-coordination

- The Single-ion Magnets (SIMs) often contain M-A bonds which fulfil initial criterion, e.g. complexes with macrocyclic ligands. How are the ligand field and magnetic anisotropy affected?
- Semi-coordination can affect magnetic properties. Mediation of ferromagnetic exchange interaction in $\mathrm{NaCu}\left(\mathrm{CO}_{3}\right)_{2}$ or antiferromagnetic exchange interaction in the $\mathrm{Cu}(\mathrm{II})$ complex.

B. Drahos et al. EJIC., 2018, 4286.

Y.V. Nelyubina et al. Inorg. Chem. 2013, 52, 14355.

V.A. Starodub et al. J. Phys. Chem. Sol. 2013, 73, 2, 350.

Co(II) Single-Ion Magnets - semi-coordination $\hat{H}=-J\left(\vec{S}_{1} \cdot \vec{S}_{z}\right)+\sum_{i=1}^{2} D_{i}\left(\hat{S}_{z i}{ }^{2}-\hat{\hat{S}}_{i}{ }^{2} / 3\right)+E_{i}\left(\hat{S}_{x, i}{ }^{2}-\hat{S}_{y}^{2}\right)+\mu_{B} B_{i} \hat{S}_{\text {Qii }}$

- [Co(dpt)(NCS) $)_{2}$], dpt = dipropylenetriamine

$$
\mathrm{Co}(\mathrm{NCS})_{2}+\mathrm{dpt}=\left[\mathrm{Co}(\mathrm{dpt})(\mathrm{NCS})_{2}\right]
$$

$$
d(\mathrm{Co} \cdots \mathrm{~N})=3.541(2) \AA
$$

Pentacoordinate $\tau=0.46$,

$$
\begin{aligned}
& d(\mathrm{Co} \cdots \mathrm{~N})=3.541(2) \AA \\
& d(\mathrm{Co} \cdots \mathrm{C})=3.652(2) \AA
\end{aligned}
$$

$$
d(\mathrm{Co} \cdots \mathrm{Cg})=3.550 \AA
$$

Hirschfeld surface ($\mathrm{d}_{\text {norm }}$)

$$
J=+0.25 \mathrm{~cm}^{-1},|D|=36 \mathrm{~cm}^{-1},
$$

 $E / D=0.22(D<0), 0.33(D>0)$

CASSCF/NEVPT2:

$D=+34.0 \mathrm{~cm}^{-1}, E / D=0.22$

I. Nemec et al. Dalton Trans., 2016, (31), 12479

Co(II) Single-Ion Magnets - semi-coordination

- [Co(dpt)(NCS) $)_{2}$], dpt = dipropylenetriamine

BS-DFT calculations

B3LYP/ZORA/-def2-TZVP(-f)
$J=+0.22 \mathrm{~cm}^{-1}$

Non-covalent exchange pathway
L. Havlicek et al. Polyhedron., 2022, (223), 115962
($3,-1$)
$(3,+1)_{6.98}$
($3,-3$)
blue lines - basins, brown lin. - bond paths

BCPs for Co $\cdots \mathrm{N}$:
type $(3,-1)$

$\nabla^{2} \rho(\mathbf{r})=0.0126267$	$\nabla^{2} \rho(r)>0$
$\boldsymbol{H}(\mathbf{r}) /$ a.u. $=0.000321$	$\boldsymbol{H}(\mathbf{r})>0$
$\boldsymbol{V}(\mathbf{r}) /$ a.u. $=-0.002513$	$\|\boldsymbol{V}(\mathbf{r})\| / G(r)=0.886<1$
$\boldsymbol{G}(\mathbf{r}) /$ a.u. $=0.002835$	non-covalent character ${ }^{6}$

$E_{\text {int }}=|V(\mathrm{r})| / 2=1.6 \mathrm{kcal} / \mathrm{mol}$
$\nabla^{2} \rho(r)>0$
$H(r)>0$
$|V(r)| / G(r)=0.886<1$
non-covalent character ${ }^{6}$

Motivation: SIMs and semicoordination

- Can semi-coordination stabilize low-coordinate Co(II) species?
- Two kinds of deposition processes: thermal evaporation or wet techniques (drop-cast)

J. Hruby et. al. Dalton Trans. 2020, 49, 11697

J. Hruby et. al. Molecules. 2020, 25, 5021

Both deposits were very sensitive to moisture and molecules (partially) decomposed during sublimation.
Can we improve stability of the tetracoordinate molecules during an after deposition by using complexes with formally saturated (by semi-coordination) coordination sphere?

Motivation: Co(II) SIMs with bidentate Schiff base ligands

- Bidentate Schiff base ligands, N,O donor set
- Magnetic anisotropy is governed by deformation of tetracoordinate tetrahedron
 (parameter of axial distortion ε_{T})
- Zero-field SIMs ($D=-20$ to $-50 \mathrm{~cm}^{-1}$)

$$
6
$$

$$
\epsilon_{\mathrm{T}}=\frac{\alpha_{\mathrm{o}}}{\alpha_{\mathrm{a}}}
$$

L. Xuet al., Z. Strukt. Khimii, 2006, 47, 1003

Motivation: Co(II) SIMs with bidentate Schiff base ligands

(i) Structural/QT-AIM investigations
(ii) Magnetism
(iii) Depositions by thermal evaporation

Synthesis

Different reaction conditions (stoichiometric ratios, pH , reaction times...) \rightarrow polynuclear complexes

Crystal structure

Shape of coordination polyhedron

Axial elongation

c.n. 4+1

c.n. 4+2

$4 \sum \lll \lll<$
$\mapsto \omega_{\mapsto}$
ϕ

QT-AIM

[Co(3MeO-5Br-pymep) $\left.{ }_{2}\right]$

$$
\nabla^{2} \rho(\mathrm{r}) \quad \text { B3LYP (def2-TZVP) }
$$

$$
d(\mathrm{Co} \cdots \mathrm{~N})=2.499(2), 2.565(2) \AA
$$

BCPs for Co $\cdots \mathrm{N}$:

type (3,-1)

$$
d(\mathrm{Co} \cdots \mathrm{~N})=2.499(2) \AA
$$

$(3,-1)$$(3,+1)$
$V(r) /$ a.u. $=-0.02878$
$H(r) / a . u .=-0.0007$
$G(r) /$ a.u. $=0.02807$
$\nabla^{2} \rho(r)=0.1095$
$\nabla^{2} \rho(r)>0, H(r)<0$
weakly covalent character
$|V(r)| / G(r)=1.03>1$ weak covalent character
$E_{\text {int }}=|V(r)| / 2=\underline{9.0 \mathrm{kcal} / \mathrm{mol}}$
other Co-N/O bonds: $42-55 \mathrm{kcal} / \mathrm{mol}$

No BCP but interaction is attractive and very likely with dominant electrostatic character

Non-covalent interaction index

($3,-1$)
$(3,+1)$
$(3,-3)$
(0)

Dynamic magnetic data

$$
\frac{1}{\tau}=\frac{1}{\tau_{\text {Orbach }}}+\frac{1}{\tau_{\text {Raman }}}+\frac{1}{\tau_{\text {direct }}}+\frac{1}{\tau_{\mathrm{QT}}}
$$

$$
U_{\text {eff }}=48.2 \mathrm{~K}, \tau_{0}=9 \times 10^{-9} \mathrm{~s}^{-1}
$$

$$
=\frac{1}{y_{0}} \exp \left(-\frac{U}{k_{B} T}\right)+d\left(\frac{1+e H^{2}}{1+f H^{2}}\right) T^{n}+a H^{m} T+\frac{b_{1}}{1+b_{2} H^{2}}
$$

(c)

> (b)

(d)

- 1.9 K
$-2.1 \mathrm{~K}$
- 2.5 K
- 2.7 K
2.7 K
+3.9 K
- 3.1 K
3.3 K
$+\quad 35 \mathrm{~K}$
$\quad 3.5 \mathrm{~K}$
$\times \quad 37 \mathrm{~K}$
3.7 K
$-\quad 3.9 \mathrm{~K}$

0
$+\quad 4.9 \mathrm{~K}$
$+\quad 4$

$\begin{array}{r}4.1 \mathrm{~K} \\ \times \quad 4.3 \mathrm{~K} \\ \hline\end{array}$
4.1 K
$*$
$*$
$-\quad 4.5 \mathrm{~K}$
$-\quad 4$ 4.5 K
$-\quad 4.7 \mathrm{~K}$
4.9 K 4.9 K
$-\quad 5.1 \mathrm{~K}$ -5.3 K
-5.5 K

Magnetic properties

Magnetism - DC data

$$
D<-20 \mathrm{~cm}^{-1}, E / D=0.122, J=-0.3 \mathrm{~cm}^{-1}
$$

$\hat{H}=-J\left(\hat{S}_{1} \cdot \hat{S}_{2}\right)+D\left(\hat{S}_{z}^{2}-\frac{S^{2}}{3}\right)+E\left(\hat{S}_{x}^{2}-\hat{S}_{y}^{2}\right)+\mu_{\mathrm{B}} B g \hat{S}_{a}$
BS-DFT

$$
\begin{aligned}
& J=-0.25 \mathrm{~cm}^{-1} \\
& \text { B3LYP/ZORA/-def2-TZVP(-f) }
\end{aligned}
$$

$$
g_{\text {iso }}=2.272, D=-15.3 \mathrm{~cm}^{-1}, E / D=0.012, J=-0.27 \mathrm{~cm}^{-1}
$$

CASSCF/NEVPT2 calculations AILFT

$D=-24.2 \mathrm{~cm}^{-1}, E / D=0.084$
(magnetometry: $D=-15.3 \mathrm{~cm}^{-1}, E / D=0.012$ HFEPR: $D<-20 \mathrm{~cm}^{-1}, E / D=0.122$)

CASSCF/NEVPT2 calculations AILFT

shorter Co $\cdots \mathrm{N}$ contact $\approx \operatorname{larger}|D|$

shorter Co $\cdots \mathrm{N}$ contact $=\operatorname{larger} E / D$

CASSCF/NEVPT2 calculations

$D=-28.3 \mathrm{~cm}^{-1}$
$E / D=0.11$

- lobes of $d_{x y}$ points towards lone pairs of pyridine nitrogen atoms - destabilization $E\left(d_{x y}\right) \uparrow$
- absence of pyridyl groups $-E\left(d_{x y}\right) \downarrow$ decrease of $d_{x y}$ energy
- lowering of $d_{x y}$ energy leads to increase of $|D|$
S. Gomez-Coca et al. J. Am. Chem. Soc. 2013, 135, 18, 7010

Depositions on graphene

Home-built high-vacuum sublimation chamber
Base pressure: $1 \times 10^{-6} \mathrm{mbar}$ - QCM for film thickness monitoring - Heated crucible for molecules
-Temperature monitoring by thermocouple

Dr. Jakub Hrubý Phd at CEITEC Brno currently: NHMFL, Tallahassee, USA

Šárka Vavrečková
MSc at CEITEC Brno
currently: Friedrich-Schiller Universitat Jena, Germany

Wet deposition

- From diluted solutions (drop-casting)

Characterization

- XPS
- AFM
- micro-Raman spectrocopy

Substrates used

- Graphene on $\mathrm{Si} / \mathrm{SiO}_{2}$

Depositions on graphene

Thermal evaporation

starts of deposition were detected at $270^{\circ} \mathrm{C}$ for $\mathbf{1}$ and at $283^{\circ} \mathrm{C}$ for 2.
Both compounds were thermally evaporated for 4 days.

Drop casting

A solution ($c=1 \mathrm{mM}$) was drop-casted under ambient conditions, where 4 x $10 \mu \mathrm{~L}$ of the solution was deposited onto a substrate.

Depositions on graphene: AFM \& XPS

1 Thermal deposition

1 Drop-casting

Drop-cast

(a)

$20 \mu \mathrm{~m}$

Depositions on graphene: micro-Raman

Submitted to PCCP

Conclusions

- We employed semi-coordination in design and synthesis of Co(II) field-induced SIMs
- We confirmed that the Co $\cdots \mathrm{N}$ interactions have attractive and electrostatic nature
- We explained how the Co $\cdots \mathrm{N}$ interactions influence the value of D parameter
- We successfully used some of the prepared complexes for deposition on the graphene by thermal evaporation

Acknowledgement

Theoretical calculations

Radovan Herchel (UP Olomouc, CZ)
HF-EPR

Jorge G. Navarro (CEITEC Brno, CZ)
Vinicius T. Santana (CEITEC Brno, CZ) Petr Neugebauer (CEITEC Brno, CZ)

SQUID magnetometry

Ivan Šalitroš (STU Bratislava, SK)
Eric McInnes (University of Manchester, UK)

Funding

"Semicoordination: a way to chemically stable molecular nanomagnets" (Grant Agency of Czech Republic, 23-07175S)

Used computational methods

- All DFT and CASSCF/NEVPT2 calculations were performed using ORCA 4.2 computational package [1]
- Coordinates from X-ray diffraction experiments were used as inputs for single-point DFT at B3LYP (def2-TZVP) level. Hirshfeld atom refinements (HAR) using NoSpherA2 module in Olex2 1.5 [2] at B3LYP (def2-SVP or def2TZVPD) level were used for obtaining final structural file.
- All geometry optimization was done by DFT at B3LYP (def2-TZVP) level including D3BJ dispersion correction
- Geometry optimization of the selected molecular fragments were done by DFT at B3LYP (def2-TZVP) level
- Calculations of ZFS parameters were done using CASSCF/NEVPT2 calculations. Active space was set to five dorbitals of $\operatorname{Co}(I I)$, \{CAS $(7,5), S=3 / 2,10$ quartet and 40 doublet roots)
- QTAIM calculations were performed using MultiWFN software [3]
- Topology of coordination polyhedra was determined calculating continuous shape measures (CSMs) using SHAPE 2.1 software [4]
[1] (a) F. Neese, Rev.: Comput. Mol. Sci., 2012, 2, 73-78; (b) F. Neese, Rev.: Comput. Mol. Sci., 2018, 8, e1327.
[2] (a) O.V Dolomanov et al. J. Appl. Cryst., 2009, 42, 339-341.; (b) F. Kleemiss et al. Chem. Sci., 2021,12, 1675-1692

[3] T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580
[4] P. Alemany et al. Rev. Comp. Chem., 2017, 30, 289

26

CASSCF/NEVPT2 calculations

